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Conservation efforts for at-risk marine species is 
a multi-disciplinary problem, and one spanning 
sub-surface, surface, and aerial spaces. This 
essay discusses Deep Vision’s contribution 
to improved population surveys of North 
Atlantic right whales through the development 
of artificial intelligence (AI) to automatically 
detect, track, and geotag this endangered 
species using commercial off-the-shelf (COTS) 
electro-optical sensors. The scalability of the 
technology, including its resilience under all 
weather conditions and its application both 
as a surface level, mast mounted monitoring 
solution for ships, and as an aerial solution 
for uninhabited aerial vehicles and crewed 
surveillance aircraft is outlined.

Introduction
The North Atlantic right whale (NARW) 
is an endangered species that is closely 
monitored in Canadian waters. The whales 
calve off the coast of Florida and then 
migrate north each year, arriving in Canadian 
waters in mid-summer and travelling through 
the Cabot Strait to rich feeding grounds in 
the Gulf of St. Lawrence.

The survival of the species is threatened 
by human marine activity (see Figure 1). 
To prevent species collapse, the Canadian 
government implemented vessel speed 
restrictions during the NARW season 
to mitigate collision risk and mandated 
temporary fishery closures to reduce the risk of 
entanglement in fishing gear.

Maximizing conservation efforts 
while minimizing fishery and shipping 
disruptions requires robust monitoring 
efforts. Monitoring initiatives track NARW 
behaviour and habitat. These initiatives 
employ crewed and uncrewed aircraft, 
reported sightings from surface vessels, and, 
increasingly, the use of artificial intelligence 
to supplement the efforts of operators. 

In 2017, 17 North Atlantic right whale 
incidents, resulting in 12 deaths, were 
attributed to human marine activity in the 

Gulf of St. Lawrence. For a species with an 
estimated population at that time of 411, this 
represented a significant impact to a highly 
endangered species. Emergency measures were 
enacted in the later part of the 2017 NARW 
season to limit risk exposure. Leading into the 
2018 season, a wide range of measures was 
adopted to limit human activity in areas where 
NARW were known to be present. Measures 
included limitations on the amount of rope 
in the water for some commercial fishing 
licences, static and dynamic fishery closures, 
and speed limitations. The result of these 
measures was clearly seen in the data, and no 
NARW deaths were recorded in 2018.

While the measures proved successful, the 
basis for closures depended largely on real-
time monitoring of the whale population. 
For instance, the confirmed presence of 
NARW in a specific fishing zone can trigger 
the temporary closure of that zone to certain 
licence holders. It is documented that in 2017 
and 2018, only 100 NARW were observed in 
the Gulf of St. Lawrence; with a population 
of slightly more than 400, this means that 
over 300 NARW were potentially exposed to 
risk. Increasing monitoring efforts provides 
an opportunity to observe more of the species 
and provide a better view of where activity 
and risk may be. This has a clear benefit 
for conservation efforts and mitigates the 
economic impact of fishery closures or 
limitations by enabling a region to open sooner 
once the risk is adequately reduced. The 
dependency is on observation.

Figure 1: The year 2017 marked a critical year for the North Atlantic 
right whale population, signalling a population in decline.
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Deep Vision has historically applied its 
technology to the defence domain. With a 
long history of developing novel intelligent 
vision technology for military applications, 
Deep Vision saw an opportunity to leverage 
its expertise in the critical area of NARW 
conservation. As a Nova Scotian company, 
Deep Vision also has a vested interest in 
supporting the Atlantic Canadian industry. 
The same vision technology developed for 
autonomous maritime persistent surveillance 
in the naval domain can be used to find and 
track NARW, protecting the species while 
minimizing the duration of closed zones.

Automating Maritime Surveillance
The maritime domain is unique for machine 
vision. The environment, both atmosphere 
and ocean, is highly dynamic. Waves, reduced 
visibility due to fog or cloud cover, poor or 
variable lighting, and precipitation are common 
factors that impact the visibility of objects 
on or near the surface of the water. This can 
impact the resolution with which an object is 
imaged and it can impact the duration of the 
imaging. For instance, a buoy from a lobster 
trap may be visible only periodically and 

incompletely due to wave action; when the 
buoy appears, it may be for very short periods 
of time and it may present as highly occluded 
and deformed due to waves and reduced 
visibility. Identifying where objects on the 
surface of the water are must be as dynamic 
as the water itself, and must scale with the 
conditions as the conditions change.

Deep Vision has positioned its technology and 
underpinning research in precisely this domain: 
providing automatic surface object detection 
in all-weather maritime conditions. At its core, 
what Deep Vision has developed is a detector 
that takes passive camera data (visible or 
infrared) and reports to the operator or system 
the location of all objects on or near the surface 
of the water (Figure 2). The nature of those 
objects (whether they be highly anticipated 
structures such as navigation buoys or as 
unexpected as a drifting log) does not factor 
into the detection. Anything near the surface 
of the water that is not itself the water or a 
consequence of the environment is detected.

From a maritime surveillance perspective, 
this distinction that any and all objects are 

Figure 2: Deep Vision’s maritime persistent surveillance technology finds objects near the surface of the water in all conditions. This capability 
was leveraged for the detection of cetaceans from aerial or surface platforms.
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detected is important. For 
instance, when navigating 
an uncrewed surface vessel, 
understanding that there is an 
obstacle in the way of a planned 
route is critical, independent 
of what that obstacle is. To 
achieve this capability, Deep 
Vision has leveraged the 
principles of unsupervised 
machine learning and applied 
them to what is classically 
referred to as the pattern-of-life.

Pattern-of-Life
Maritime object detection operates 
by understanding which visual features and 
behavioural characteristics are expected: 
the pattern-of-life (PoL). The expected 
characteristics vary spatially and temporally. 
What may be unique in one region may be 
very typical in another and, likewise, what 
may represent uniquely at one time may be 
expected at another.

The PoL is the set of real-time learned 
characteristics (visual and behavioural) 
that characterize the expected appearance 
and behaviour in a region over time. To 
assess the PoL, the input needs to reflect 
the visual appearance and the behaviour 
characteristics to the extent that trends can be 
ascertained. The framework used to achieve 
this is the unsupervised clustering of visual 
and behavioural properties via the k-means 
clustering algorithm. As observations are made 
during run time, trends emerge in the k-means 
clustering, which results in an effective 
partition of background features from those 
likely associated with an object. 

Detecting Objects
Regions of interest are locally identified in 
the native coordinate space of the sensor. A 
similar learning phase is applied to the regions 
of interest to identify trends. Environmental 
features, such as crashing waves or sun 
speckle, emerge from this second phase of 
learning and are, thereby, filtered from the 

detection list. Resulting from this process 
is a set of detected surface-level maritime 
objects. A tracking process is inherent to the 
methodology, with each unique object having 
a position in sensor coordinates and a unique 
identifier that allows it to be differentiated 
from other objects that are imaged (Figure 3).

Whale Watching
With the news of increased human-related 
incidents involving North Atlantic right whales 
in 2017, Deep Vision objectively evaluated 
the potential to refine its generic maritime 
surveillance technology into a tool for 
automatic NARW detection. A rapid pace study 
was done using video data freely available in 
the public domain, such as drone clips from 
whale watching adventures. The purpose of the 
study was to evaluate a series of videos from 
aerial and surface perspectives using Deep 
Vision’s technology and identify if the whales 
were being detected along with the other 
surface-level objects in the scene. 

The short case study proved conclusively 
that there was merit in moving forward. 
Figure 4 shows a frame capture from an early 
experiment. In this video, a whale surfaced 
near the vessel on a clear weather day. Both 
the whale and vessel were detected, with the 
technology demonstrating promise for detection 
both when the whale is visible subsurface and 
when it breaches the water’s surface.

Figure 3: Information about objects and the environment is learned in real time 
while the system is in operation. The system adjusts itself continually to optimize 
operation in whatever conditions are present. Peaks in the graph correspond to 
periods of real-time learning. 
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Work began in late 2018 on an ambitious plan 
to develop an automated cetacean detector 
that works from surface and aerial platforms, 
and from fixed and moving installations. The 
focus was on exploiting COTS visible light 
cameras, as they are readily available on most 
existing vessels and aircraft (crewed and 
uncrewed). By developing an unconstrained 
system, the potential to interface with a wide 
variety of platforms increases the survey 
potential and area covered, and thus has a 
clear conservation advantage.

Through the later part of 2018 and the first 
quarter of 2019, an accelerated program of 
work formed the foundation for Deep Vision’s 
cetacean detection capability. While the 
basic principles extended the core maritime 
surveillance technology, considerable new and 
innovative work was developed to refine the 
technology into a cetacean detector. In addition 
to furthering the scientific and mathematical 
principles underlying the technology, a 
range of issues was solved that furthered the 
objective of providing an unconstrained system 
with easy integration options. 

Cetacean Classification
The classification model employed for 
monitoring of the cetaceans was a hybrid of 
visual and contextual classification. The core 

detection as described isolates an object as 
something that appears or behaves differently 
to the water, and is repeatedly visible with 
similar characteristics over a short period 
of time. This provides the set of all surface-
level maritime objects, including the subset 
of cetaceans. Specific information unique to 
cetaceans was considered in filtering on this 
set: in particular, physical limitations and 
behavioural characteristics. 

Physical dimension was used to limit the set of 
detected objects to those which may possibly 
have been a cetacean. No lower limit was 
applied, while the upper limit was capped at 
the maximum length of cetacean that would 
be considered. Through the exploitation 
of platform and camera data, real world 
measurements were generated for candidate 
cetaceans in real time. 

Behavioural characteristics required 
extensive literature review. Unlike a boat 
that is continuously visible (notwithstanding 
environmental considerations), a cetacean is 
only visible in limited intervals. The duration 
of visibility, the dynamics of how the visual 
presentation changes, and the rate at which 
the visible signature dissipates all impact the 
behavioural metric and contribute to positive 
detection of a cetacean.

Figure 4: A rapid study was 
done using Deep Vision’s 
maritime persistent surveillance 
technology to evaluate the 
likelihood of cetacean detection. 
This study was focused on 
determining if cetaceans were 
in the full set of surface-level 
detected objects.

DEEP VISION



38   The Journal of Ocean Technology, Vol. 16, No. 3, 2021 Copyright Journal of Ocean Technology 2021

It was assumed that cetaceans are largely 
visible through their effect on the environment 
rather than on visibility of their bodies directly. 
Building a classification schema requiring 
visibility of the body was deemed limiting. 
The optical thickness of the water confounds 
imaging of subsurface whales due to a range 
of factors including camera, altitude, viewing 
angle, weather conditions, etc. Whales 
breaching the surface to breathe or to feed do 
so with a driving force that disturbs the water 
around them, resulting in the visual signature 
being predominately the effect of the whale 
on the water rather than the whale itself. Deep 
Vision’s expertise in unsupervised machine 
learning made it possible to differentiate 
between disturbed water from wave action 
versus disturbed water from a cetacean.

Staring at Water
The trial data used in support of this study 
was provided in kind by Transport Canada. 
The data consisted of unmanned aerial 
vehicle-captured imagery spread over seven 
survey days in August 2018 (Figure 5). Each 
set was comprised of high resolution (4 K, 
6000x4000) images and associated platform 
metadata. All images were captured at a rate 
of approximately once every four seconds 
(0.25 frames per second).

The survey data spanned a wide range of 
operational conditions, including contrasting 
lighting (bright day, dark day); highly focused 
sunlight producing wide area sun glare; calm 
seas; and heavier, white cap marked seas.

A typical survey consisted of a large number 
of images with very few examples of cetaceans 
or any feature aside from the water. For 
example, a survey in the Gaspé region on 
August 19, 2018, consisted of 2,464 4 K 
images, representing approximately a three-
hour survey. The survey data was processed by 
the cetacean detector with the following results 
(see Figures 6 and 7):

•	 A total of two distinct cetaceans were 
detected, providing a total of six geotagged 
snapshots/crops of the observations. 

•	 No false detections (non-cetacean 
classifications/detections) were produced.

•	 A total of three surface anomalies were 
missed. These are comprised of surface 
features that visually appear distinct from 
waves or sun glare but did not conform 
to the expected physical characteristics of 
disturbed water induced by a cetacean.

Processing power required for cetacean 
surveys of this nature was evaluated. On 
a standard workstation (Intel i7-2600 K 
CPU @ 3.40 GHz), processing the entire 
three-hour survey took two minutes twenty 
seconds. This equates to a processing rate of 
17-18 Hz on 4 K imagery. On a low powered 
ARM-based device (ODROID-XU4), 
processing the entire three-hour survey took 
eight minutes sixteen seconds. This equates 
to a processing rate of 5 Hz on 4 K imagery. 
The latter is equivalent to ~60 Hz at 1080p 
resolution, more than enough to enable most 
Edge AI applications.

Figure 5: Sample of 
consecutive frames from 
a typical aerial survey. The 
images are 4 K (6000x4000 
pixels) and captured at a 
rate of 0.25 Hz.DEEP VISION
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The maritime domain presents its challenges 
with weather heavily influencing the visibility 
of cetaceans. With increased wind comes 
increased wave action and, as a result, 
increasingly disturbed water due to waves. 
When a cetacean breaches the surface, 
the combination of wave dynamics and 
atmospheric dynamics can distort, minimize, 
or amplify the visible signature of the 
cetacean. Trials were conducted to evaluate 
the impact of stormy conditions on the 
automatic detection of cetaceans.

A survey from August 11, 2018, in the 
Gaspé region was used as representative of 
more challenging conditions. The survey 
consisted of 2,097 4 K images sampled at 
approximately 0.25 Hz. Figure 8 shows an 
example of the conditions surveyed on the 

Figure 7: Each instance of a 
cetacean that is automatically 
detected can be viewed by 
an operator for more detail, 
including the geolocation of 
the cetacean, a full resolution 
view, and the date and time the 
observation was made.

day. Due to the challenging nature of the 
survey, a careful manual inspection of the 
imagery was done to identify what could 
likely be a cetacean. The manual survey was 
unable to identify any instances of cetaceans. 

The cetacean detector was used to process 
the survey data and resulted in 17 detections 
(Figure 9). Each detection was reviewed. While 
16 detections were concluded to be induced by 
wave action and not of interest, one detection 
clearly showed a cetacean submerged near 
disturbed water from a wave. To place into 
perspective the achievement in this result, it 
took a manual observer approximately three 
hours to review the survey and conclude that no 
cetaceans were present. The cetacean detector 
processed the same set in approximately 
two minutes thirty seconds and produced 

Figure 6: Detection of a cetacean in consecutive frames from aerial survey data.
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17 possible cetaceans. It then took under 
one minute for a person to manually review 
the detections, discount 16, and identify the 
presence of a cetacean. The dataset to review 
was reduced by 99.18% and a cetacean was 
found that would otherwise have been missed.

Moving Forward
Conservation of North Atlantic right 
whale and other at-risk species is a multi-

disciplinary problem with a wide spectrum of 
stakeholders. Key to this effort is monitoring 
and observation. Policies that have proven 
successful in averting human-caused mortality 
of the NARW rely on understanding where the 
whales are. Modification of human activities 
that jeopardize NARWs rely on knowing when 
NARWs enter and depart particular zones. This 
enables balance between conservation and the 
economic interests of the region.

Figure 9: A cetacean detected amid heavy seas. This instance was not immediately visible on manual 
inspection, but detected by Deep Vision’s technology.

Figure 8: An example of an aerial survey on a day with heavier seas and sun glare.
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Monitoring and observation fall in the hands of 
many parties, and are being improved through 
contributions from government, academia, and 
industry. Just as the problem has a diversity 
of contributors, so too are the solutions 
encompassing. Advancements in underwater 
listening technology have enabled solutions 
for subsea detection, with the technology fast 
becoming more reliable and cost effective. 
Crewed surface and aerial systems have proven 
extremely effective, yet are neither cost nor 
resource efficient. Crewed aerial patrols must 
be strategically delivered to make the most of 
the resources available, missing opportunities 
if NARW habitat varies significantly from 
expectation. Trained observers, known as 
marine mammal observers, must review the 
data for positive identification, an extremely 
time-consuming task.

Efforts like those taken by Deep Vision to 
automate surface and aerial detection make the 
most of the resources available. They allow 
marine mammal observers to review a select 
set of potential cetacean detections and confirm 
or disregard. More focused use of human 
resources will enable monitoring of larger 
geographic areas, faster turnaround in zone 
closure decision-making (with less unnecessary 
disruption of economic activity), and more 
efficient and effective preservation efforts.

Deep Vision is positioning its work in cetacean 
detection to play a vital role in conservation 
and mitigating economic losses for the region. 
A range of key strategic partnerships has been 
established between Deep Vision and industry 
with the goal of bringing this technology to 
market. This collaboration includes a highly 
respected marine environmental technology 
company and a not-for-profit marine science 
research institute. 

Conservation of at-risk species is a problem 
that requires cooperation, collaboration, and 
innovation. The problem is bigger than one 
company, bigger than one government agency. 
As skills and innovations are tested, matured, 
and proven, the risk to species will continue to 

be reduced and the activities we depend on for 
our economic livelihood can co-exist with the 
many species that share the same waters.  u 
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